Accepted Manuscript

Research papers

Tracer sampling frequency influences estimates of young water fraction and
streamwater transit time distribution

Michael P. Stockinger, Heye R. Bogena, Andreas Liicke, Bernd Diekkriiger,
Thomas Cornelissen, Harry Vereecken

PIL: S0022-1694(16)30486-3

DOI: http://dx.doi.org/10.1016/j.jhydrol.2016.08.007
Reference: HYDROL 21442

To appear in: Journal of Hydrology

Received Date: 17 June 2016

Revised Date: 2 August 2016

Accepted Date: 3 August 2016

L JOURNAL OF
'HYDROLOGY

Please cite this article as: Stockinger, M.P., Bogena, H.R., Liicke, A., Diekkriiger, B., Cornelissen, T., Vereecken,

H., Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution,
Journal of Hydrology (2016), doi: http://dx.doi.org/10.1016/j.jhydrol.2016.08.007

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.jhydrol.2016.08.007
http://dx.doi.org/10.1016/j.jhydrol.2016.08.007

Tracer sampling frequency influences estimates of young water fraction and

streamwater transit time distribution

Michael P. Stockinger*, Heye R. Bogena, Andreas Liicke, Bernd Diekkriiger, Thomas

Cornelissen, Harry Vereecken

Authors’ addresses:

Michael P. Stockinger, Andreas Liicke, Heye R. Bogena and Harry Vereecken

Forschungszentrum Jiilich GmbH, Institute of Bio- and Geosciences, Agrosphere

Institute (IBG-3), Wilhelm-Johnen-Stralle, 52425 Jiilich, Germany

Bernd Diekkriiger and Thomas Cornelissen

Bonn University, Department of Geography, Meckenheimer Allee 166, 53115 Bonn,

Germany

*Corresponding author: Michael Paul Stockinger, Forschungszentrum Jiilich GmbH,
Agrosphere Institute (IBG-3), Wilhelm-Johnen-Straie, D-52425, Germany, Tel +49 2461 61

5484, m.stockinger @fz-juelich.de




ABSTRACT

The streamwater transit time distribution (TTD) of a catchment is used to derive insights into
the movement of precipitation water via various flow paths to the catchment’s stream.
Typically, TTDs are estimated by using the convolution integral to model a weekly tracer
signal measured in streamflow. Another approach for evaluating the transit time of water to
the catchment stream is the fraction of young water (F),,) in streamflow that is younger than a
certain threshold age, which also relies on tracer data. However, few studies used tracer data
with a higher sampling frequency than weekly. To investigate the influence of the sampling
frequency of tracer data on estimates of TTD and F),, we estimated both indicators for a
humid, mesoscale catchment in Germany using tracer data of weekly and higher sampling
frequency. We made use of a 1.5 year long time series of daily to sub-daily precipitation and
streamwater isotope measurements, which. were aggregated to create the weekly resolution
data set. We found that a higher sampling frequency improved the stream isotope simulation
compared to a weekly one (0.35 vs: 0.24 Nash-Sutcliffe Efficiency) and showed more
pronounced short-term dynamics in the simulation result. The TTD based on the high
temporal resolution data was considerably different from the weekly one with a shift towards
faster transit times, while its corresponding mean transit time of water particles was
approximately reduced by half (from 9.5 to 5 years). Similar to this, F),, almost doubled when
applying high resolution data compared to weekly one. Thus, the different approaches yield
similar results and strongly support each other. This indicates that weekly isotope tracer data
lack information about faster water transport mechanisms in the catchment. Thus, we
conclude that a higher than weekly sampling frequency should be preferred when
investigating a catchment’s water transport characteristics. When comparing TTDs or F),, of

different catchments, the temporal resolution of the used datasets needs to be considered.
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1 Introduction

Many studies of catchment transit time distributions (TTDs), representing the different flow
paths taken by precipitation water during catchment passage, and of the mean transit time
(MTT), the average time a water parcels needs to exit the catchment after entering it as
precipitation, used weekly sampling intervals for chemical [Hrachowitz et al., 2009; Molenat
et al., 2013] or isotopic tracer data [Rodgers et al., 2005; Stockinger et al., 2014; Tetzlaff et al.,
2007; Viville et al., 2006]. Only few studies applied data with a higher/sampling frequency
[Kirchner et al., 2000; Roa-Garcia and Weiler, 2010]. For example, using a sub-daily
sampling frequency for several events, Roa-Garcia and Weiler [2010] found evidence of
time-variable MTTs when looking at event and base flow conditions. Birkel et al. [2012]
refined this knowledge by estimating TTDs of a one year long time series using daily
precipitation and weekly, daily and 4h (during two events) streamflow stable isotope data

(8%0 and &H), respectively. They found evidence for time-variable TTDs with summer and

winter runoff events differing in MTTs: Consequently, Birkel et al. [2012] argue for the value
of high-frequency sampling to evaluate the feasibility of MTTs derived with data sets of e.g.,
weekly sampling intervals. This argument is supported by findings of Berman et al. [2009],
who found fine-scale changes in the isotopic composition of precipitation measuring up to 90
samples per day. Additionally, the need for high-resolution tracer data to move forward in the
hydrological sciences was recently emphasized [McDonnell and Beven, 2014], while
Kirchner et al. [2004] pointed out the importance of high-frequency chemical data for a better

understanding of catchment hydrology.

The effect of sampling frequency of tracer data on estimates of MTTs was investigated by
Hrachowitz et al. [2011]. They used weekly precipitation and stream isotope data to estimate

MTTs of a Scottish catchment and found increasing errors in MTTs while increasing the



sampling interval up to 8 weeks. They argue that internal catchment processes will be

misrepresented when using a reduced sampling frequency.

More recently, the study of Timbe et al. [2015] of a tropical montane cloud forest catchment
compared different sampling frequencies of stable isotope data ranging from daily to
bimonthly and found that it affected estimates of TTDs for soil and stream water. However, in
their study the case of daily sampling intervals was based on daily precipitation data only,
while the stream was sampled weekly. Additionally, modeling focused on baseflow
conditions, as samples of several rainfall-runoff events were discarded, potentially missing

faster flow conditions in their analysis.

The effect of using long-term isotope tracer data of streamwater and precipitation with a daily
or sub-daily sampling frequency on estimated TTDs and MTTs has not yet been studied.
Considering the argument of Hrachowitz et al. [2011] that high-resolution data can potentially
better represent internal catchment processes, the hydrological community faces the risk of
acquiring a biased understanding of catchment runoff generation processes when using low
temporal resolution data. Furthermore, the comparison of TTDs of different catchments
derived from data sets with different sampling frequencies may lead to ambiguous results (e.g.,
the study of Heidbiichel et al. [2012] using fortnightly isotope tracer data for one catchment,

while using daily isotope tracer data for a different catchment).

Many of the prior studies used the convolution integral approach to derive the TTD and MTT
from tracer data. Recently, Kirchner [2016a] and Kirchner [2016b] tested a similar approach
by fitting sine waves to the tracer signal of precipitation and streamflow and derived the MTT
using the change in amplitude and the occurring phase shift. Both studies show that the sine
wave method is not able to derive correct MTTs under the condition of spatial heterogeneity
[Kirchner, 2016a] and non-stationarity [Kirchner, 2016b]. As every catchment is

heterogeneous and non-stationary to some degree, the sine wave fitting method is not suitable
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to derive TTDs and MTTs. Accordingly, a new measure was proposed which could be
correctly estimated, which is the fraction of young water, F,, [Kirchner, 2016a]. F,,
represents the fraction of water that is younger than a certain threshold age. It remains a topic
of future studies to test whether the convolution integral suffers from equal aggregation bias

errors as the sine wave method.

In this study, we investigated the hypotheses that (1) a higher sampling frequency improves
the quality of stable isotope modeling of streamwater in terms of an objective function metric,
and (2) the TTD is a function of sampling frequency. To this end, we estimated TTDs using
the convolution integral approach. As Kirchner [2016a] showed the potential of aggregation
bias error when using the convolution integral, which would result in a highly uncertain
understanding of the impact of sampling frequency on a catchment’s water transport
characteristics, we additionally investigated an independent proof-of-concept metric with the

hypothesis that (3) F\, is a function of sampling frequency.

The data for this study consisted of stable isotope data (8%0) with a temporal resolution of 0.5

day for precipitation and daily and 4h for streamflow under baseflow and event conditions,

which were mathematically aggregated to a weekly temporal resolution.
2 Methods
2.1 Study Site

The Erkensruhr catchment (41.7 km?) is located in the western part of Germany at an altitude
between 286 m asl. in the northern to 631 m asl. in the southern part (Figure 1). The
catchment’s climate is humid with a distinct precipitation gradient (annual precipitation
increases from 740 mm in the eastern part to 1150 mm in the western part). The mean annual
temperature ranges from 7.6 °C for higher to 10.0 °C for lower altitudes. The catchment is

part of the national park Eifel and dominantly covered by coniferous forest in the south and
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deciduous forest and grassland in the north (Figure 1, Table 1). Soils in the catchment
primarily are cambisols with the exception of river valleys where gleysols and planosols can
be found. The base rock is Devonian clay shale with sandstone intrusions [Stoltidis and Krapp,

1980].
2.2 Measured Data

We used hydrological and isotopic data to estimate TTDs and F),, for the time period of 3
October 2012 to 8" March 2014. Additionally, data from 24" November 2010 to 2" October
2012 was used to spin up the model that was applied to estimate TTDs (Figure 2, Figure S1 in

Supplemental Material).

Precipitation amount data (1 hour resolution, 0.1 mm increment) was acquired from the
Schoneseiffen meteorological station (620 m-asl.) located at the southeastern border of the
catchment (Figure 1). To account for the catchment’s precipitation gradient we used
precipitation radar data from the Neuheilenbach station (585 m asl., German Weather Service,
DWD). Radar pixel sizes varied between 0.95 and 2.1 km” and precipitation was determined
in five minute intervals. A global rescaling factor was applied to the precipitation amounts of
each pixel so that:the value of the pixel to which the Schoneseiffen station belongs equals ‘1°.
We then calculated the arithmetic mean of the pixel values within the Erkensruhr catchment
to represent the catchment’s average areal precipitation amounts in comparison to
Schoneseiffen. Finally, the Schoneseiffen precipitation time series was multiplied with this
value to rescale it to the Erkensruhr precipitation input. Additionally, snow data acquired from
the meteorological station Kalterherberg (German Weather Service, station number 80115,
535 m asl.) located approximately 9 km to the west of the Erkensruhr catchment was used to

account for snow blanket buildup in hydrological modeling.



Stream stage data (15 minute resolution, 1 mm increment) is available from 2001 to the
present (courtesy of the local water board, Wasserverband Eifel-Rur) and was converted to
runoff using a polynomial regression to the 4t power (R? = 0.99, not shown). Situated in the
south of the Erkensruhr catchment lies the well-studied Wiistebach sub-catchment which is
one of the Terrestrial Environmental Observatories (TERENO) test sites [Bogena et al., 2015;
Zacharias et al., 2011]. Soil water content (SWC) data from this location was used to aid in

estimating TTDs of the Erkensruhr.

As about 55% of the catchment is forest-covered and canopy interception influences the

estimates of TTDs [Stockinger et al., 2015], different kinds of precipitation 30 samples were

taken at three different locations throughout the catchment: (1) throughfall (TF) samples of a
deciduous forest (Im Brand, IB) in weekly resolution; (2) TF samples of a coniferous forest
(Wiistebach, WU) in weekly resolution; and (3) open land (OP) samples at the Schoneseiffen
meteorological station in 0.5 day resolution. We could not sample the location Im Brand from
6™ November 2012 to 17" May 2013 due to administrative issues. While TF was sampled
using RS200 samplers that were already successfully applied in the precipitation isotope study
of Stockinger et al. [2015], OP was sampled by a cooled, automated sampler (NSA 181/KS-

16, Eigenbrodt).

To create a single high resolution precipitation 3%0 time series necessary for modeling, we

first amount-weighted the high resolution OP isotope data according to the sampling dates of
the TF samples to create weekly OP isotope data. Then we calculated the weekly isotopic
differences of the weighted OP data to measured TF at the forest stations WU and IB,
respectively. This was done in such a way that a positive difference indicates enrichment in
isotope values of TF when compared to OP, as can often be observed [Dewalle and Swistock,
1994]. To create the high resolution TF data for both forest locations, these weekly

differences were added to the high resolution OP values of the respective weeks. Finally, the
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three high resolution time series of OP, IB and WU were unified into a single high resolution
time series by weighing them according to the Erkensruhr land use percentages (see Table 1)

of coniferous forest (WU), deciduous forest (IB) and the remaining land uses (OP).

The amount-weighted, weekly OP was further used to verify OP isotope measurements. at
Schoneseiffen against (a) data of weekly bulk samples from an independent cooled sampler at
Schoneseiffen, (b) TF from the location IB in the north of the catchment to investigate a

possible intra-catchment gradient in precipitation isotopes, and (c¢) TF from the location WU.

Stream samples for stable isotope analysis were taken in daily. time steps during low flow
conditions and 4h time steps during high flow conditions using a cooled, automated sampler
(Liquistation CSF48, Endress+Hauser). The threshold for switching between low and high
flow conditions was adjusted at irregular intervals and subjectively chosen according to the
respective water level to guarantee isotopic. characterization of several runoff events. The
sampler stream isotope data was verified against manually taken weekly grab samples from

the same location.

As only the stream stage data was available for the spin up phase, the other necessary data
was acquired from different sources as the ones used for the modeling phase. Precipitation
amounts were acquired from the Kalterherberg station (1 hour resolution, 0.1 mm increment,
DWD) and correlated to Schoneseiffen precipitation amounts. We then calculated the spin up
precipitation amounts by multiplying the Kalterherberg data with the obtained regression
slope value and the rescaling factor obtained by the precipitation radar procedure. We used

precipitation 3%0 from the weekly, cooled bulk samples taken at Schoneseiffen. For stream
3%0 we correlated the available Erkensruhr 80 time series to the Wiistebach sub-catchment’s

which extends to the necessary time period. The resulting regression equation with an R? =



0.45 was deemed suitable for the purpose of spinning up the model and thus used to create

weekly Erkensruhr stream isotope data.

Due to the high correlation of Wiistebach and Erkensruhr runoff values (R? = 0.88, not shown)
and the lack of catchment-wide SWC information for the Erkensruhr catchment, we used data
of a wireless SWC measurement network (SoilNet) installed in the Wiistebach sub-catchment
to estimate changes in hydrological response behavior of the Erkensruhr catchment (for
details on SoilNet refer to Bogena et al. [2010] and Rosenbaum et al./[2012]). We do not
assume that the Wiistebach soil water content values were quantitatively valid for the whole
Erkensruhr catchment, but rather that the trend of SWC in the Wiistebach was qualitatively

sufficient to estimate the changes in hydrological behavior of the Erkensruhr catchment.

Water isotopic analysis was carried out using two measurement systems: (1) an Isotope-Ratio
Mass Spectrometer (Delta V Advantage, Thermo Scientific) coupled with a high temperature
pyrolysis furnace (HT-O, HEKAtech), and (2) laser-based cavity ringdown spectrometers

(models L2120-i and L2130-i, Picarro). Results are reported as 3values relative to Vienna
Standard Mean Ocean Water (VSMOW) [Brand et al., 2014], where d= (Rs/Rs; -1)*1000

with Rg and Rg, as isotope ratios (180/160) of samples and standards, respectively. Internal
standards calibrated against VSMOW, Standard Light Antarctic Precipitation (SLAP2) and
Greenland Ice Sheet Precipitation (GISP) were used to calibrate raw data and to ensure long-
term stability of analyses. The integrity of measurement results between the mass
spectrometer and the laser-based systems was verified within the measurement uncertainties
by measuring reference waters with all systems. The precision of the analytical systems was <

0.1 %o for 8%0.
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2.3 TTD Calculation

TTDs were estimated in hourly time steps with the conceptual model TRANSEP [Weiler et al.,
2003]. First, effective precipitation (p.y), the fraction of total precipitation that is not lost to

evapotranspiration and deep percolation, is estimated by modeling the observed hydrograph:

Q) = fot.g(TR)peff(t — Tg)dTg (D

where Q(t) is the simulated runoff at time #, g( %) is the Response Time Distribution (RTD), %
the response time and p.s(t — &) is the effective precipitation for time step ¢ - % While the

TTD describes the actual water particle transport through the catchment, the RTD also
includes hydraulic pressure waves propagating through the soil [Rinaldo et al., 2011].
Estimation of p.; was done using a non-linear Antecedent Precipitation Index (API) approach

[Jakeman and Hornberger, 1993]:
Perr = p(t)s(t) (2a)
s(t) = byp(t) + (1 — by 1)s(t — At) (2b)

where p(t) is precipitation, s(¢) the API, A the calculation time step of 1 h, b; a scaling factor

to match the amount of total simulated runoff to the amount of total p.s and b, 1s weighing
each precipitation event backward in time. An additional parameter, b3, sets the initial API

conditions for time step ¢ = 0.

Modeling of the hydrograph with Equation 1 included a simple snow model [Stockinger et al.,
2014] to account for the time delay in precipitation water input to the catchment in case of
buildup of a snow blanket. We used the snow data acquired from the Kalterherberg
meteorological station to identify times of snow blanket build up. During those times, all

precipitation was conceptually stored in a reservoir. In case of partial or full melt, a volume-
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proportional amount of melt water was released from this conceptual reservoir over the course

of six hours.

Similar to the method used in Stockinger et al. [2014] for the Wiistebach sub-catchment, the
hydrograph of the Erkensruhr was split into individual modeling periods to estimate p.g by
using SWC measurements of the Wiistebach. This was done as the modeling result using the
complete hydrograph resulted in over-predictions during summer months; while winter
months were under-predicted (not shown). The modeling periods used in this study describe
the catchment’s wet and dry states in terms of overall catchment wetness: For each modeling
period we assumed quasi-constant hydrological behavior. In.terms of the RTD, this means a
constant RTD for each individual modeling period. Thus the hydrograph was split into three
distinct modeling periods: a wet state followed by:a dry state and a wet state again. They will
from now on be referred to as ‘Winter_12’, ‘Summer_13" and ‘Winter_13" (Figure 2). As the
model is re-initialized with O mm/h runoff at the beginning of each modeling period, we
omitted plotting the unavoidable artefacts of very small runoff values at the beginning of each

phase.

During early modeling it became apparent that the described approach applied at the
Wiistebach (0.385 km?) was not sufficient for the hundredfold larger Erkensruhr (41.7 km?).
Peak runoff situations were not modeled adequately (not shown) which could pose a problem
with the high resolution isotope stream data that captured many peak runoff situations. Thus,
to better simulate these situations and to better characterize the catchment’s response to

precipitation, several steps had to be taken.

First, we identified extreme runoff situations (i.e., events) during the wet and dry states and
modeled them individually. For the wet states, we defined the start of an event as the
exceedance of the 97.5% confidence band of the daily hydrograph gradient. Events ended

when the falling hydrograph limb either a) reached the 5%-quantile of runoff values of the
12



respective wet state or, b) was intercepted by another event (Figure 4). We then estimated p.g
individually for these wet state events by subtraction of the base flow, which was identified as
the lowest observed runoff value during the event. To compare the response of the catchment,
we combined the RTDs of the non-event and the event modeling periods by weighting them
according to their temporal proportion of the hydrograph. Contrary to this, dry state events
had a much shorter duration and it was necessary to use the hourly hydrograph gradient
instead of the daily one to identify events. We estimated p.y for dominant events by first
subtracting the mean runoff of the three days prior an event from the runoff of the first two
event hours. The ratio of the resulting value to the peak runoff was multiplied with the event
precipitation amount to estimate p.g (also see Stockinger et al. [2014] and the event of 31 July
2010 mentioned in their study). This assumes that within two hours the fast response of the
catchment to an extreme rainfall event has finished and the rest of the event runoff stems from

past precipitation water.

Second, even with the event-separated p.y estimation the modeling of the dry state (Summer
2013) resulted in a non-realistic hydrograph simulation (Figure 3). Thus, this modeling period
was further separated into a main phase that is preceded by a drying phase and followed by a
wetting-up phase. A large part of the dry state (from now on referred to as the main phase)
could be characterized by a linear trend fitting a major part of the log-transformed hydrograph.
However, this linear trend did not describe the whole modeling period but only the central
part. Thus, the beginning and end of the dry state were interpreted as a drying (‘D’ in Figure 3)
and a wetting-up (‘W’ in Figure 3) phase separated in their hydrological characteristic from
the main phase. The p.s of these three phases of the dry state were thus also modeled

individually.

After p.y estimation, the TTD was estimated by modeling the isotope tracer signal in the
stream:

13



_ fg Cin(t—Tr)Pesr(t—Tr)R(TT)dTT
c@) = G
Jo Pegrt—Tr)R(zr)dTT

3)

where C(t) is the simulated streamwater isotope concentration at time f, pg(t — %) is effective
precipitation for time ¢ - §, C;,(t-7) is the precipitation isotope concentration at time ¢ - 7 with
transit time % and k(%) is the TTD, which is calibrated during the modeling of the isotope

tracer signal in the stream.

We used the two-parallel linear reservoirs model for the RTDs and TTDs, as it showed good

results in previous studies (e.g., Stockinger et al. [2015]):

9t = Lexp(—2) + Zlexp (-1 4)
-9 _Ir), =9 _Ir
hrp) = Lexp (=) + exp (- 1 (5)

where @ is a partitioning factor (between O and 1) and Fand 7 are the mean transit times of the

fast and slow reservoirs, respectively.

The corresponding mean response time (MRT) and MTT were calculated from the two-

parallel linear reservoirs parameters:
MRT or MTT =15 x p + 73 (1 — ) (6)

To objectively evaluate the hydrograph simulation we used the Volumetric Efficiency (VE) as
it equally evaluates low and high flow conditions. To emphasize an adequate modeling of
isotopic peaks considering the high resolution isotope tracer data, we used the Nash-Sutcliffe
Efficiency (NSE) for the stream isotope simulation, as the NSE is sensitive to time series

peaks [Criss and Winston, 2008; Nash and Sutcliffe, 1970]:

E|Qsim‘Qobs|
VE =1 - ———/—= 7
EQobs ( )

14



Z(Cobs - Csim)Z
NSE =1 - =—/——F"= 8
Z(Cobs - Cobs)2 ( )

where Q,ps, Osims Cobs and Cy;, are observed and simulated runoff and streamwater isotope

concentration respectively.

The parameter space was searched using the Ant Colony Optimization algorithm [Abbaspour

et al.,2001].
2.4 Fraction of young water

We calculated the fraction of young water F,, for each temporal resolution following
Kirchner [2016a]: First, sine waves were fitted to the precipitation and the streamflow isotope
time series, respectively. To do this, we determined the cosine and sine coefficients ap and bp

(precipitation) and as and bs (streamflow) of the multiple linear regression functions:
Cp(t) = apcos(2nft) + bpsin(2rft) + kp,
Cs(t) = agcos(2mft) + bssin(2mft) + ks C)

with Cp(t) and Cs(t) being the tracer signal in precipitation and streamflow at time ¢, f the
frequency of the fitted sine wave, and kp and kg represent the vertical shift of the sine wave.
Due to the annual seasonal behavior of precipitation and streamflow isotopes, the frequency

of this study was set to 1/8766 hours (365.25 x 24, i.e., 1 per year).

Fitting was done by using the iteratively reweighted least squares method, which limits the
influence of outliers. Precipitation isotope values were weighed by their respective bulk
precipitation amounts, while streamflow isotope values were weighed by the runoff value at

the time of streamflow sampling.

The amplitudes Ap and Ay and the phase shift of each sine wave ¢ and ¢ was calculated by:
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AP= ﬂa}z)'l' bz, AS=\la§+b2,
@#=tan—1(albr), @=tan—1(asbs) (10)

Contrary to the calculation method in Kirchner [2016a], the phase shift between precipitation

and streamflow sine waves @ — @ was derived by the arctangent of the vector cross product

over the vector dot product of precipitation and streamflow coefficients, as this is a better way
of finding the phase shift than the simple subtraction (personal communication Kirchner, May

2016):

$—F=tan—1(alPLS—aSbP)/(aPaS+bLLbS) 1)

With the amplitude ratio Ag/Ap and the phase shift ¢ — @ we then calculated the shape
parameter cof the gamma distribution function I{of} that represents the catchment’s TTD by

iteratively solving:

&— P=atan—1((AS/AP)—2/a—1) (12)

The scale parameter fof I{of) was calculated with:

B =57 |G 1 (13)

Using gwe then found the threshold age %, for the fraction of water younger than this age,

Fy, by using the regression equation of Kirchner [2016a]:

Tyw = 0.0949 + 0.1065a — 0.0126a2 (14)

As the final step, F),, was calculated with the lower incomplete gamma function E'ryw,(x[):

— _ (ow T 3
wa = F(Tyw, a,ﬁ) = fr:O me dt (15)
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Calculation of F),, was carried out once as described and for comparison once with the much
simpler approach also described in Kirchner [2016a], in which F),, equals the amplitude ratio

Ag/Ap.

2.5 Uncertainty estimation

The individual uncertainties of the convolution integral method and of F,, were derived as
follows: for the convolution integral the parameter uncertainties were obtained by first
identifying the 95%-confidence limits of the posterior parameter distribution of the last third
of parameter sets that were used by the Ant Colony Optimization search algorithm. These
limits were then used as parameter boundaries for 1000 Monte Carlo simulations (MATLAB
toolbox “MCAT v.3). The minimum and maximum stream isotope and TTD values found by
all 1000 Monte Carlo runs were defined as the uncertainty limits. The observed stream isotope

uncertainty corresponds to the measurement precision.

For the fraction of young water we defined a tight and a wider uncertainty: the tight
uncertainty of Fy,, was defined on one hand by the result of the simple calculation method of
deriving F, (only using A¢/Ap) and on the other hand by the result of the more complex

approach (additionally using @ — @). The wider uncertainty was found during calculation, as

some of the parameters of the multiple linear regressions used in Equation 9 showed large p-
statistic . significance values (far larger than the usually applied 0.05 limit). We thus
propagated the errors to the results by once adding and second subtracting the error estimate
of the estimated coefficients with the large p-statistics. From all the resulting combinations,
we chose the minimum and maximum values of the results to define the wider uncertainty for

Fy.
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3 Results and Discussion

3%0 of the weekly amount-weighted OP was highly correlated with the weekly Schoneseiffen

bulk samples and TF isotopes measured at IB and WU (R? = 0.88 with slope 1.02 for the bulk
samples, and R? = 0.77 with slope 1.06 and R? = 0.86 with slope 1.08 for IB and WU,
respectively). Stream isotope data was verified against the weekly grab samples (R? = 0.69,
Figure 2c). A direct comparison of OP and TF for the purpose of identifying an isotopic
precipitation gradient is complicated because, in comparison to OP, TF is reduced in
precipitation amount and its stable isotope values are affected by canopy passage. However,
precipitation input to the Erkensruhr catchment did at least not show a strong isotopic gradient
based on cardinal directions or altitude. The similarities of TF and OP only support the
assumption of homogeneous above-canopy precipitation isotopes. Canopy-induced changes in
TF isotope values compared to OP might seem negligible, but are actually important for TTD

estimation and hydrograph separation [Kubota and Tsuboyama, 2013; Stockinger et al., 2015].

To account for the effect of TF on estimates of streamwater TTD, we used a land-use based
weighing of three point-measurements, two of which were TF with a weekly resolution only.
With this approach we inherently assumed each point-measurement to be representative for
the land-use unit it was situated in. However, several studies showed the influence of canopy
structure on the isotopic composition of TF [Brodersen et al., 2000; Kato et al., 2013] and
problems of TF sampling systems with small precipitation amounts [Zimmermann and
Zimmermann, 2012]. It is not likely that the Erkensruhr coniferous and deciduous forests are
uniform in canopy structure throughout the catchment. Nonetheless, we assumed the
uncertainties associated with this land-use based weighting approach to be negligible in
comparison to the effect of different tracer data resolutions and based this assumption on the

good correlations between OP and TF isotope measurements throughout the catchment.
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The precipitation radar data showed that the distributed precipitation amounts over the
Erkensruhr catchment amounted on average to 92% of the recorded Schoneseiffen amounts
(94% for 2010, 90% for 2011). Thus, Schoneseiffen precipitation amounts were multiplied
with a global rescaling factor of 0.92. This simple method to account for the precipitation
gradient of the catchment was assumed to be sufficient for use with the simple conceptual
model applied in this study, which assumes a uniform spatial distribution of rainfall.
Erkensruhr runoff was highly correlated with runoff and SWC measured at Wiistebach (R2? =
0.88 and 0.89, respectively). Uniformity in at least temporal occurrence of precipitation is
confirmed by the high correlation of the Wiistebach and Erkensruhrtunoff. Stockinger et al.
[2014] have shown that a strong relationship between ‘overall catchment wetness of the
Wiistebach and its hydrological response behavior exists. Similar to Graf et al. [2014], they
expressed the overall catchment wetness as the average of the spatiotemporal high resolution
SWC. The high correlation of the Erkensruhr runoff to the Wiistebach’s runoff and SWC
indicates that the Wiistebach SWC can be used as an appropriate indicator of the catchment
wetness of the Erkensruhr catchment. Thus, we can assume that the switching from wet to dry
states found in the Wiistebach catchment [Stockinger et al., 2014] also takes place in the
whole Erkensruhrcatchment. A possible mechanism driving this is the balance between water
and energy input to both catchments [Heidbiichel et al., 2012]. Our assumption is supported
by the successful splitting of the hydrograph into modeling periods of mostly uniform
hydrologic behavior (except for event runoff situations), and the subsequent satisfying
simulation of the Erkensruhr hydrograph (see below). This highlights the importance of
measuring SWC data [Vereecken et al., 2008] and shows that the method for splitting the
hydrograph into periods of quasi-constant hydrological behavior applied by Stockinger et al.

[2014] can be transferred to higher-order catchments at least.
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The usage of the simple snow model of Stockinger et al. [2014] may have led to additional
uncertainties in the hydrograph simulation, e.g., compaction of the snow blanket is not
accounted for. However, snow only sparsely occurred during the modeling period.
Furthermore, the hydrograph modeling results slightly improved (from VE = 0.62 to VE =
0.66) while peak height and timing could be better simulated (not shown). Thus, we believe
the shortcomings of this simple snow model in relation to our overall not too complex

modeling setup to be negligible.

3.1 Stable isotope modeling of streamwater

Hydrograph simulation results for all modeling periods. showed overall good VE values
ranging from 0.59 to 0.83 (Figure 5a, Figure 6 and Table 2) with a total p. of 780 mm.
Although several runoff events were well modeled, some runoff peaks were underestimated.
The MRTs increased from the event phase of Winter_12 to the non-events (Winter_12 and
Winter_13) and to Summer_13 (Figure 7, Table 2). Combining both the non-event and the
event simulation of Winter_I2 resulted in a RTD that matched the one of Winter_13
(Winter_12 (C) compared to Winter_13 in Figure 7). A similar catchment response during
wet states was already observed in Stockinger et al. [2014], where the Wiistebach catchment
also showed matching RTDs. Furthermore, the Wiistebach’s two dry states responded
similarly too. This could however not be compared to the present study, as the modeling
period of the Erkensruhr only comprises one dry state. A seasonal cycle of a catchment’s
hydrologic response was also found for the humid Rietholzbach catchment in the study of
Heidbiichel et al. [2012] by using a time-varying TTD approach rather than splitting up the

hydrograph.

The delineation of runoff events during the wet states resulted in five identified events (Figure
4). The four events of Winter_12 surpassed the 97.5% daily hydrograph gradient at the

beginning of the rising hydrograph limb. They directly followed each other and thus were
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modeled as one segment, meaning one RTD was used for all four events. For the single event
of Winter_13 the 97.5% threshold was exceeded at the peak of the rising hydrograph. Due to
this, it was not modeled separately and no p.y values were updated. For Summer_13, the dry
state, we used the hourly hydrograph gradient and identified three dominant events where pgy
was modeled separately. Comparison of average runoff before those events and peak runoff in
the first two hours resulted on average in 95% of event rainfall becoming p.; and creating a

quick response in stage level at the outlet within two hours (Figure 4).

The drying and wetting-up phase of Summer_13 had similar MRTs which were in between
the longer MRT of Summer_13 and the shorter MRTs of both winters (Table 2). Similar to
this, Birkel et al. [2012] found longer transit times for events with low antecedent wetness (in
the terms of this study: the dry state). Heidbiichel et al: [2012] explained this by differences in
storage as well as precipitation and energy input to the catchment. This finding is in contrast
to the behavior of the Wiistebach sub-catchment reported in Stockinger et al. [2014], which
had shorter response times during dry conditions. The authors argued that the Wiistebach’s
hillslopes disconnect hydrologically from the runoff-generation process during the dry state,
thus disconnecting primarily slow flow paths. This assumption may be valid for a small
headwater catchment with shallow soil depths, but a complete disconnection of all slow flow
paths during dry states becomes less likely with increasing catchment size due to more varied
land-use, topography, soil depths, etc., creating buffering and superposition effects in the
hydrograph. As the Erkensruhr’s geology changes in the Northern part, the detection of a
complete or partial disconnection of slow flow paths during dry states could be impaired and
is subject of future research. Despite the contrasting seasonal response behavior, the runoff of
Erkensruhr and Wiistebach was highly correlated (R? = 0.88), which can be attributed to the
generally shallow soil depths, extremely low conductivity of the bedrock in the Erkensruhr

catchment and the uniform spatial occurrence of precipitation input. We argue that these
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relatively short flow paths (limited by the shallow soil depth) led to a similar response of both
hydrographs on the hourly time scale. Contrary to this, the RTD captures the overall reaction

of the catchment during the complete modeling period, far exceeding the hourly time step.

The stream isotope simulation was better optimized when using high resolution data
compared to using weekly data (NSE = 0.34 vs. NSE = 0.24, respectively). This comparison
is based on calculating the high resolution NSE solely for isotope values.that were also
observed in the weekly resolution case (Table 3). Considering all observed values of the high
resolution case resulted in an NSE value of 0.22, which is slightly lower than the one of the
weekly resolution case. Winter_13 was not well modeled in terms of stream isotopes, with the
simulation result overpredicting for both the weekly and the high resolution case. While
results based on high resolution data had an NSE of 0.34 when considering the modeling
periods before Winter_13, it became -2.01 for Winter_13. The unsatisfying modeling result of
Winter_13 could be explained with the simplified model assumptions of TRANSEP, e.g., a
time-invariant TTD. Using a model based on time-variant transit times, e.g., that of Klaus et
al. [2015], may improve ‘the simulation results. Generally, both the weekly and high
resolution tracer data had comparatively low NSE values that were however comparable to

results of the Wiistebach sub-catchment’s outlet found in Stockinger et al. [2014].

Comparison of the simulated stream isotopes revealed that the high resolution case was able
to reproduce short term dynamics with sudden steep changes in isotope values, e.g., at the
beginning of 2013 or at the beginning of Winter_13. Comparing this to the weekly resolution
results, the beginning of 2013 did not show such a steep increase in stable isotope values,

while the decrease in values in Winter_13 is completely missing (Figure 5c¢).

3.2 The TTD estimated by the convolution integral
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There is a tradeoff between capturing long-term dynamics and short-term peaks of the
streamwater isotope signal concurrently, which is reflected in the isotope simulation results
and estimated TTDs (Figure 8). While the high resolution simulation features more short-term
dynamics, both data resolutions nonetheless focused on capturing the long-term behavior of
the isotope time series (Figure 5c). This is reflected in the respective TTDs, where the high
resolution TTD emphasized faster flow paths in contrast to the weekly TTD. Because of this,
the high resolution data allows for simulation of short-term peaks, e.g., the second isotope
peak at the beginning of the time series, or the short-term decrease of isotope values in
November 2013, all of which are absent in the rather smooth weekly simulation result.
However, the long tails of both TTDs are similar in form, reflecting the emphasis of both
simulations to capture the long-term behavior of the streamwater isotope time series. This
explains the overall similarities of the isotope simulations of high resolution and weekly data,

despite vastly differing TTDs.

Overall, transit times based on weekly resolution were longer than the ones based on high
resolution data, with MTTs of 9.53 and 4.66 years, respectively (Figure 8, Table 3). This
finding is corroborated by Hrachowitz et al. [2011], who used weekly data and found that
MTT absolute errors increase with increasing sampling intervals. Contrary to this, in Timbe et
al. [2015] the MTTs of the weekly and daily case are almost indistinguishable. This
discrepancy might be related to the use of weekly streamwater isotope data in Timbe et al.
[2015], while this study used at least daily (and several times 4-hourly) data. At the same time
the data resolution of precipitation is higher compared to the former study (0.5 day versus 1
day) which might also have had an impact on the magnitude of differences in MTTs of

weekly and higher data resolutions.

The application of stable isotopes with the convolution integral reaches its limit for MTTs

longer than 4-5 years, as longer MTTs often lead to isotope signal variations in the stream that

23



are smaller than the measurement error, thus becoming effectively invisible to the method
[Stewart et al., 2010]. As the MTTs of this study are 5 and 10 years long, this makes an exact
quantitative interpretation of the simulation result difficult at least. Furthermore, Kirchner
[2016a] showed that a similar method to the convolution integral applied in this study, sine
wave fitting to estimate MTT, is not able to reliably estimate MTTs. This so: called
aggregation bias error is caused by spatial heterogeneity and non-stationarities in the
catchment [Kirchner, 2016a; Kirchner, 2016b]. As of yet, no similar investigation of the
convolution integral exists, but the risk of the convolution integral suffering under the same
aggregation bias must be considered. Thus, we deem the “obtained TTDs and MTTs
qualitatively, but not quantitatively, valid. This means that we consider the uncertainty
connected with the exact shape of the TTD and the exact value of its MTT to be potentially
very large, while the general conclusion of this study still holds true: higher resolution data
influences estimates of TTD, emphasizing faster flow paths in the TTD. This is corroborated
by our analysis of the fraction of young water in streamflow, which Kirchner [2016a] showed
to be a reliable estimator, withweekly and high resolution data as discussed in the next

section.

Overall, similar to findings of Timbe et al. [2015], this study found that the high resolution
sampling scenario is preferable over the lower resolution one. Thus, when estimating TTDs,
weekly isotope data can mislead our interpretation and concepts of internal catchment
processes that govern water transport [Hrachowitz et al., 2011]. Care must be taken regarding
the temporal resolution when comparing the TTDs of different catchments to infer controls on
the TTD (e.g., the isotope tracer studies of Tetzlaff et al. [2009a] and Tetzlaff et al. [2009b],
comparing ten respectively 55 catchments). In cases where the temporal resolution of tracer
data of the catchments in comparison does not match, TTD differences could be partly due to

different temporal resolution of the used data [Heidbiichel et al., 2012].
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3.3 The fraction of young water estimated by sine wave fitting

According to Kirchner [2016a], we fitted sine waves to the precipitation and streamflow
isotope data for weekly (Figure 9) and high resolution (Figure 10) data using iteratively
reweighted least squares. The fitted cosine-coefficient for the high resolution and weekly
precipitation data was determined with a large p-statistic (p = 0.44 and 0.92, respectively) and
thus higher quantitative uncertainty, while the sine-coefficients and the constants for both data
resolutions had considerably smaller uncertainties (p at least < 0.02, Table 4). For streamflow
sine wave fitting, most parameters showed small p-statistics with the exception of the sine-
coefficients for the weekly data resolution. We nonetheless used coefficients with large p-
statistics in further calculations and assumed resulting errors to be small. As F),, derived with
the simple method gave very similar results when comparing it to results obtained with the
more complex method (as discussed below), we could show that this assumption was justified.

This was true for both data resolutions.

The calculated amplitudes and phase shifts lead to much more similar fitted sine waves in the
case of precipitation than for streamflow when comparing both data resolutions. This
indicates that the weekly bulk sample of precipitation water is sufficient to retain the seasonal
pattern of the precipitation signal, with the seasonal variations in isotopes dominating the
precipitation_signal, while the weekly resolution grab samples of streamflow averaged-out
unique information. This unique information could be isotopic peak events with a high weight,
e.g., at the end of 2012 and the beginning of 2013 (Figure 10), which led to the twofold
increase of the amplitude of high resolution streamflow data compared to weekly streamflow

data (Table 4).

Using the simple method of deriving F),, where F,, equals As/Ap, we found that the high
resolution data revealed approximately a doubled amount of the fraction of young water when

compared to the weekly resolution data (0.047 for weekly vs. 0.084 for high resolution, Table
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5). Application of the more complex method led to very similar phase shifts between

precipitation and streamflow for both data resolutions as well as similar shape factors ofor the
gamma-distributed TTD (weekly: ¢ — ¢ = 50.36 rad, o= 0.56; high resolution: ¢ — ¢ = 48.15
rad, o= 0.54). The scale factor fwas markedly different with 320,960 for weekly data and
140,032 for the high resolution data case. Due to the similarity in ofor both data resolutions,
also the threshold age of young water 7, was similar with 55 and 54 days for weekly and high

resolution data, respectively (Table 5). For both data resolutions the calculated threshold age
of young water is approximately the mean value of the wide uncertainty (weekly: 55 days
with uncertainty of 47 to 67 days, high resolution: 54 days with uncertainty 49 to 60 days).
Due to the strong similarity of the uncertainty for both data resolutions, it seems that the

threshold age for young water is insensitive to the sampling frequency of tracer data.

Applying the complex method, Fy, was found to be 0.051 for weekly and 0.090 for high
resolution data, comparing well to the simple method results of 0.047 and 0.084 (Table 5).
These results define the tight uncertainty of F,,. When propagating the uncertainty found
during multiple linear regression to the results to obtain the wide uncertainty, the weekly data
resolution varied with a fraction of young water from 0.038 to 0.070 being younger than 47 to
67 days. Results from the high resolution case varied with Fy, from 0.078 to 0.094 being
younger than 49 to 60 days. Thus, the narrow uncertainty has approximately the same interval
width for both data resolutions, while contrary to this the wider uncertainty is larger for the
weekly resolution compared to the high resolution data set (0.038 to 0.070 versus 0.078 to
0.094, respectively). Thus, in the case of the fraction of young water (F),), the high sample

resolution considerably reduced the uncertainty in F),,.

The twofold increase in amplitude for the high resolution streamflow isotope data was

responsible for the approximately twofold increase in the fraction of young water. The found
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fractions of young water correspond well with recent findings of a global study of young
water fractions conducted by Jasechko et al. [2016]. They found that a majority of the 254
investigated catchments had a fraction of young water between 0 and 30%, with an average of

26% Fy,.

Thus, in summary, when using weekly resolution data we found 4.7 — 5.1% of streamflow
water being younger than 55 days, while when using high resolution data the results-almost

doubled to 8.4 — 9.0 % being younger than 54 days.

Comparing the fraction of young water found at 55 (weekly) and 54 days (high resolution) to
the corresponding cumulative TTD value at 55 and 54 days, we found a good agreement
between estimating Fy, and inversely modeling TTD by means of the convolution integral
(weekly: TTD value at 55 days of 0.039 compared to 0.051 F),, high resolution: TTD value at
54 days of 0.138 compared to 0.090 F),). Thus, although the convolution integral might be
affected by aggregation bias error as suggested by Kirchner [2016a], at least in this study the
estimates for faster flow paths derived from both methods are well comparable. Due to this,
we recommend calculating the convolution integral TTD and the fraction of young water
jointly in future studies to better investigate the relationship between those two measures

under different catchment conditions.

4 Conclusion

In this study we investigated the influence of sampling frequency of tracer data on estimates
of TTDs and the fraction of young water of a mesoscale catchment. For this purpose, we used
sub-daily to daily and weekly stream and precipitation isotope tracer information. The stream
isotope simulation results for both temporal resolutions captured the long-term dynamics well.
The high frequency sampling data improved the simulation in terms of NSE, showing short-

term dynamics that were not captured when using weekly data. This was reflected in the
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respective TTDs, where the longer transit times of both data resolutions were similar and
stronger deviations only occurred in the short transit time region. The use of daily to sub-daily
tracer information also reduced the MTT by almost 50% compared to weekly data. When
using high resolution data, the fraction of young water doubled compared to weekly data.
Thus, both the convolution integral and the fraction of young water came to the same
conclusion. Our results highlight the importance of sub-weekly isotope data on estimating
TTDs or the fraction of young water and the associated risk of misinterpreting a catchment’s
water transport characteristics when using weekly measurements.” Consequently, when
comparing TTDs or young water fractions of different catchments, the temporal resolution of

tracer data needs to be considered in the analysis.

Our study confirms that high resolution data is needed to be able to adequately characterize
hydrological processes at the catchment scale [McDonnell and Beven, 2014], may they be
reflected by the TTD or F,,. Future research should focus on overcoming technical
difficulties and establishing the high resolution isotope or chemical tracer data needed to

ensure an improved understanding of catchment functioning [Kirchner et al., 2004].
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Tables

Table 1. Percentage land use of the Erkensruhr catchment.

Land Use Fraction [ %]
Grassland 36
Coniferous Forest 33
Deciduous Forest 22
Heath 3
Agriculture 2
Copse 2
Settlement 2

36



Table 2. Parameter values of the three modeling periods Winter_12, Summer_13 and

Winter_13 for the hydrograph simulation (Sim), the event simulation (E) and the drying (D)

and wetting-up (W) phase. Also shown are volumetric efficiency (VE) and the mean response

time (MRT).
Winter_12 Summer_13 Winter_13
Sim E Sim D A% Sim
bl [-] 0.5 0.5 0.06 0.34 0.31 0.5
b2 [-] 10 10 1.14 5.18 5.42 10
b3 [-] 0 1 0.96 1 0.67 1
Tf [d] 5.5 54 12.0 11.7 23.0 4.9
Ts [d] 61.2 41.7 3334 166.5 107.5 41.7
o[-] 0.63 0.96 0.67 0.73 0.78 0.78
VE [-] 0.66 0.77 0.59 0.69 0.83 0.71
MRT [d] | 26.1 6.8 118.1 53.5 41.6 13.0

bl, scaling parameter; b2, precipitation weighing parameter; b3, API at t = 0 (Equ. 2); Tf,
fast reservoir mean residence time; Ts, slow reservoir mean residence time; ¢ fast
reservoir contribution to RTD; VE, volumetric efficiency; MRT, mean response time.
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Table 3. Parameter values of the high resolution and the weekly resolution TTD estimates.

Also shown are the mean transit times (MTT) and the Nash-Sutcliffe efficiency values (NSE)

when calculating the high resolution NSE only with weekly data points (weekly data) and

with all data points (all), as well as the individual NSE for the phase before Winter_13 (before

W_13) and for Winter_13 itself (W_13).

High Resolution Weekly
Tf [a] 0.55 0.56
Ts [a] 9.89 10.64
o[- 0.56 0.11
weekly data all data
0.34 0.22
NSE[-] before W_13 | W_I3 0.24
0.34 -2.01
MTT [a] 4.66 9.53

Tf, fast reservoir mean residence time; T's, slow reservoir mean
residence time; ¢ fast reservoir contribution to TTD; NSE, Nash-

Sutcliffe efficiency; MTT, mean transit time.
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Table 4. Multiple linear regression coefficients (a, b) and constant (k) of the precipitation
(subscript P) and streamflow (subscript S) sine wave fits and their respective p-statistic for
weekly and high resolution data. Calculated from these values are the amplitude (A) and the

phase shift (¢ of each sine wave.

High Resolution Weekly
Value | p-statistic | Value | p-statistic
S| a 022 044 |005 092
S by |-120 ~0 |-1.11  0.02
E ke 795 ~0 794  ~0
S | Ap %] 1.22 111
| @[rad] 20.18 -0.04
= | as 009 ~0 |004 0.8
S| bg |005 -0 [-003 027
E| 1 |85 -0 |-854 -0
&1 Ag[%] 0.10 0.05
2 @ [rad] 1.02 0.92

a, b, and k, regression coefficients and constant; A, amplitude;
¢ phase shift; subscripts P and S, precipitation and

streamflow.
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Table 5. Threshold age for young water (T,) and fraction of young water (F,) results and the

wide uncertainties for the weekly and high resolution data cases, respectively. Calculations
were performed once with the simple (using only amplitudes) and once with the complex
method (using the amplitudes and the phase shift). Comparison to TTD results is given under

heading “TTD”.

Simple | Complex| TTD
Tw [days] - 55
= Uncertainty” 47 - 67 @
Fow 0.047 0.051 i
Uncertainty” 0.038 - 0.070
Tw [days] - 54
= Uncertainty® 49 - 60 §
= Fyw 0.084 0.090 S
Uncertainty” 0.078 - 0.094

Tw, young water threshold; Fy, fraction of young

water; W, weekly resolution; HR, high resolution;

TTD, cumulative TTD value at the threshold age.

a) Uncertainties only refer to the complex case
error propagation
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Figure 1. Location, elevation and land-use map of the Erkensruhr and the Wiistebach

catchment.
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recorded (no rain) and (c) stream isotopes with measurement error (grey, vertical lines
engulfing the observed isotope time series). Isotopes were measured in high resolution (high
Res) and calculated for weekly resolution (weekly), with manually taken stream samples for
validation (Grab Sample, Panel c). The grey, vertical dashed lines in all panels delineate the

three main modeling phases: Winter_12, Summer_13 and Winter_13.
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Figure 3. Logarithmic runoff (Obs) plotted with SWC measured at the sub-catchment
Wiistebach (SWC (WU)). First simulation of Summer_13 resulted in an unrealistic solution
(Sim). Thus, identifying a main phase using a linear trend with R? = 0.92 (red line),
Summer_13 was split into this main phase, preceded by a drying (D) and followed by a
wetting-up phase (W). Also shown is the separation of the complete time series into the three
modeling periods (vertical, grey dashed lines) and the SWC limit for splitting the hydrograph

(horizontal, grey dashed line).
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Figure 4. Identification of runoff events in the hydrograph (Obs) by using the 97.5%
confidence interval of the daily hydrograph gradient (Gradient (daily)) and the 5%-quantile of
runoff (horizontal, dashed grey lines) during the respective wet states. For the dry catchment
state the hourly hydrograph gradient was used (Gradient (hourly)). Identified events are

marked by dashed, red lines.

45



Pegr ||

[ ]
ot
n

Figure 5. (a) Simulated runoff (Sim) with event modeling (Sim (Events)) plotted against
observed runoff (Obs) on a logarithmic scale. Effective precipitation (pefr) is shown as blue
bars from the top; (b) and (c) Stream isotope modeling results (Sim) plotted together with

observed stream isotopes (Obs) and their respective measurement uncertainties (grey lines)
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ACCEPTED MANUSCRIPT

using weekly and high temporal resolution. The narrow uncertainty of the simulation are
shown as red dashed lines. Vertical, dashed grey lines in all panels denote the three modeling

periods.
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Figure 6. Parameter values of the hydrograph simulation with p.s parameters b/, b2 and b3

and RTD parameters 7, & and ¢ displayed for the hydrograph simulation (Sim), the event case

(E) and the drying and wetting phase (D/W). Vertical axis limits denote the parameter search

boundaries.
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Figure 7. Response Time Distributions of the modeling phases: The three main modeling
phases Winter_12, Summer_13 and Winter_13, as well as the event modeling (Winter_12
(E)). Summer_13" was sub-divided into a drying (Summer_13 (D)) and a wetting-up phase
(Summer_13 (W)). The combination of the Winter_12 simulation with the event simulation

Winter_12 (E), denoted as Winter_12 (C), resulted in a RTD comparable to Winter_13.
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Figure 8. Transit Time Distributions based on weekly (Weekly) and high resolution (High
Res) of precipitation<and streamwater isotope data using the convolution integral. The
gamma-distributed TTDs that were derived during the calculation of F,, are displayed for
weekly (Fyw  weekly) and high resolution (Fyw HighRes) for comparison reasons.
Uncertainty bands are shown as dashed lines, with the threshold age for young water shown

as the vertical dashed line. Inset shows zoomed in details.
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Figure 9. Sine wave fits (Sine Fit_P and Sine Fit_Q) of observed weekly precipitation and
streamflow 8°0 isotope data (Obs_P and Obs_Q). The streamflow sine wave fit is shown in
better detail in the lower panel. The applied weights are plotted as grey dotted lines in each
panel and refer to precipitation weights in the top and streamflow weights in the lower panel.

Weights that exceeded the mean plus the standard deviation are highlighted as green lines (top)

or green dots (bottom).
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Figure 10. Sine wave fits (Sine Fit_P and Sine Fit_Q) of observed high resolution
precipitation and. streamflow 3%0 isotope data (Obs_P and Obs_Q). The streamflow sine
wave fit is shown in better detail in the lower panel. The applied weights are plotted as grey
dotted lines in each panel and refer to precipitation weights in the top and streamflow weights
in the lower panel. Weights that exceeded the mean plus the standard deviation are

highlighted as green dots.
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Highlights

1) The effect of sampling frequency on transit time distributions is explored

2) The effect of sampling frequency on the young water fraction is explored

3) Higher sampling frequency improves stable isotope tracer simulation results
4) Weekly sampling frequency lacks information of faster flow paths

5) Catchment comparison studies of transit time should consider sampling frequencies
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